Monday, July 27, 2009
CINCINNATI MILACRON T3 ROBOTIC ARM
Cincinnati Milacron built large industrial robots primarily for welding industry. It was one of the first companies to change from hydraulic to electric robots. Milacron pioneered the first computerized numerical control (CNC) robot with improved wrists and the tool centre point (TCP) concepts. The first hydraulic machine, the introduced in 1978. It closely resembled the General Electric Man-mate, ITT arm, and other predecessors (Sullivan 1971). Constructed of cast aluminium, it is available in two models of 6-axes revolute jointed arms. The largest, the T3-776, uses ballscrew electric drives to power the shoulder and elbow pitch. The ballscrews replaced the hydraulic cylinders originally used on the T3 robots. The elbow is a classical example of intermediate drive elbow. The same techniques, only upside down, appear in the shoulder. Shoulder yaw is provided by the standard bullgear on a base mounted motor drive. End users have discovered that ballscrews are not sufficiently reliable and are pressuring for an alternators. The eventual disappearance of ballscrews in industrial robots seems inevitable.CONTROL SYSTEMThe T3 robotic arms is controlled using a Hierarchical Control System.A Hierarchical control system is partitioned vertically into levels of control. The basic comand and control structure is a tree, configured such that each computational module has a single superior, and one or more subordinate modules. The top module is where the highest level decisions are made and the longest planning horizon exists. Goals and plans generated at this highest level are transmitted as commands to the next lower level where they are decomposed into sequences of subgoals. These subgoals are in turn transmitted to the next lower control decision level as sequences of less complex but more frequent commands. In general,the decisions and corresponding decompositions at each level take into account: (a) conrmands from the level above, (b) processed sensory feedback information appropriate to that control decision level, and (c) status reports from decision control modules at the next lower control level.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment